

Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization

David N. Ford
Texas A&M University

Thomas Housel
Naval Postgraduate School

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, inclu- ion of information. Send comments arters Services, Directorate for Infor ny other provision of law, no person	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE MAY 2014		3. DATES COVERED 00-00-2014 to 00-00-2014			
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
	ings with 3D Printin aintenance and Rev	g Combined With 3	D Imaging and	5b. GRANT NUM	1BER
CFLWI for Fleet WI	amtenance and Kev	itanzation		5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	ER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AE e School,Monterey,	` /		8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited			
13. SUPPLEMENTARY NO AFCEA 11th Annu		arch Symposium, 14	4-15 May 2014, M	Ionterey, CA	
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	Same as Report (SAR)	20	RESI UNSIBLE FERSUN	

Report Documentation Page

Form Approved OMB No. 0704-0188

An IT Adoption Challenge

- Cost constrained DoD environment requires cost reduction
- Threats require US military to retain technological superiority
- Complex IT acquisition process
- Improved ship maintenance and revitalization has potential for successfully addressing these needs
 - SHIPMAIN-recommended new technologies
 - 3D Laser Scanning Technology (3D LST)
 - Collaborative Product Lifecycle Management
 - Additive Manufacturing (3D printing)

Research Context

<u>Problem</u>: Learning curve savings forecasted in SHIPMAIN maintenance initiative have not materialized. *Why?*

Hypothesis: The right mix of new technologies have not been adopted and widely used.

This research tests the impacts of technology adoption strategies on Navy maintenance cost savings.

Potential Technology: 3D Terrestrial Laser Scanning

- Laser scans space from highly articulated mount, often combined with 360° camera
- Software processes points into 3D image of the space. Processed into CADD format.
- Currently used in automotive, offshore construction and repair, civil and transportation, building construction, fossil fuel and nuclear power plants
- Recommended as part of SHIPMAIN
- Potential Navy uses: map spaces for ship retrofit & upgrades, existing conditions surveys as part of damage assessment, fitting requirements for repairs

Potential Technology:

Collaborative Product Lifecycle Management (CPLM)

- To "integrate people, processes, and information"
- Electronically integrates design documents, data bases, 3D LST, etc., for participant collaboration across physical distances and time.
- Common, shared sets of documents improves access, collaboration, coordination, communication
- Common platform for program change management
- Recommended as part of SHIPMAIN
- Potential Navy uses: configuration control, parts design libraries, cross-vessel and cross-platform coordination of revitalization

Potential Technology:

Additive Manufacturing

("3D Printing")

- 3D design/image of final part. Create net.
- Geometric slicing of image into horizontal layers for manufacturing
- Incrementally add small amounts of material in very thin layers of material to build-up part
- Variety of possible materials (plastic, titanium) & methods (e.g. for material bonding)
- No dominant method, materials, suppliers
- Developed since SHIPMAIN recommendations
- Potential Navy uses: fast parts manufacturing for repair, less expensive creation of few parts, improved designs (e.g. less weight)

Research Approach

- 1. Collect data on Navy use of Additive Manufacturing.
- Build simulation model (system dynamics) of Naval parts manufacturing for ship maintenance.
- 3. Simulate steady-state technology adoption and use strategies.
- Build Knowledge-Value-Added models of technology adoption and use strategies. Use simulated strategies to simulate Returns-on-Investment (ROI).
- Use Returns-on-Investment to estimate costs and thereby cost savings of technology adoption and use strategies.

1) Data Collection

- Naval Surface Warfare Center Port Hueneme Division (NSWC PHD), May 10, 2013 - use of AM by that facility.
- Fleet Readiness Center Southwest, Naval Air maintenance Depot, San Diego July 17-18, 2013 – use of AM at North Island NAVAIR maintenance depot.
- Description and estimates for modeling.
 Ex: Repair parts process, Manufacturing process, manpower requirements, Avg. value of parts (\$), manufacturing rates

1) Data Collection Results

Additive Manufacturing by the US Navy

Depot-Level Machining Shop Process (Kenney, 2013)

2) System Dynamics Model

Information Processing for Additive Manufacturing

2) System Dynamics Model Manufacturing Processing

3) Simulate Technology Adoption & Use Strategies: Scenarios Modeled

- As-Is: Current processes used at the depot where data was collected
- To-Be#1: Immature AM AM used only to <u>create</u> <u>prototypes</u>
- To-Be#2: Immature AM <u>with CPLM</u> used only to create prototypes
- To-Be#3: Immature AM <u>with 3DLST</u>, CPLM used only to create prototypes
- Radical#1: <u>Mature AM with CPLM</u> used to create both prototypes and final parts
- Radical#2: Mature AM, <u>3DLST</u>, CPLM used to create both prototypes and final parts

4) Knowledge Value Added Models: Sample Results

TO-BE#1- Immature	AM		
	Benefit: ROI		
Processes	Cost ratio (%)		
Process request	RADICAL TO-BE#1- Ma	ture AM + C	PI.M
Search Library	MIDICILE TO BEHT WILL		
Prepare CAD & Add r		Benefit:	RON
Fixturing	D	C 4 4	(0/)
Manufacture part	Processes	Cost ratio	(%)
Inspect part	Process request	3.13	213%
Check functionalit	Search Library	1.27	27%
Totals:	Prepare CAD & Add Manuf	26.01	2501%
	Inspect part	3.08	208%
	Check functionality	0.48	-52%
	Totals:	8.87	787%

5) Estimate Costs and Savings

	Prototype parts produced	Final parts produced
Old technologies	Prototype cost using old technologies	Final parts cost using old technologies
New technologies	Prototype cost using new technologies	Final parts cost using new technologies

The Four Cost Components of Each Technology Adoption and Use Strategy

5) Estimate Costs and Savings: Results Annual Production Costs and Savings

ROI = (Benefits-Costs) / Costs

Scenario Simulation Name	Scenario Description	Old techn. prototypes / year	New techn. prototypes / year	Old techn. final parts / year	New techn. final parts / year	ROI - old techn.	ROI - new techn.	Prototype cost (X\$1,000)	Final parts cost (X\$1,000)	Total Cost (X\$1,000	Cost Savings from As-Is scenario (X\$1,000)	
As-Is	Current technologies	3,000	2,000	25,000	0	15%	30%	\$43,469	\$911,801	\$955,27	\$0	only
To-Be #1	Immature Additive Manufacturing	0	5,000	25,000	0	15%	12%	\$46,716	\$911,801	\$958,51	-\$3,247	bes (
To-Be #2	Immature Additive Manufacturing + CPLM	0	5,000	25,000	0	15%	92%	\$27,379	\$911,801	\$939,18	\$16,090	Prototypes
To-Be #3	Immature Additive Manufacturing + CPLM + 3DLST	0	5,000							\$949,24	\$6,025	Pro
Radical To-Be #1	Mature Additive Manufacturing + CPLM	0	5,000	0	25,000	15%	787%	\$5,920	\$118,392	\$124,31	\$830,959	es &
Radical To-Be #2	Mature Additive Manufacturing + CPLM + 3DLST	0	5,000	0	25,000	15%	1391%	\$3,520	\$70,401	\$73,92	\$881,348	ototypes

Result: Very large cost savings are possible <u>IF</u> scale-up adoption and use.

5) Estimate Costs and Savings: Results Annual Cost Savings of AM, CPLM, 3DLST, and Scaling Up Use

			1	2	3	4	5	
	Scenario Name	Scenario Description	Savings from As-Is scenario (X\$1,000)	Savings from Additive Manufacturing (X\$1,000)	Savings from Collaborative Product Lifecycle Management (X\$1,000)	Savings from 3D Laser Scanning Technology (X\$1,000)	Savings from scaling up adoption and use (X\$1,000)	Notes on savings by specific strategies
1		Current technologies	0					
2	•	Immature Additive Manufacturing	-\$3,247	-\$3,247				←(To-Be#1)-(As-Is) Small scale use
3		Immature Additive Manufacturing + CPLM	\$16,090		\$19,337			←(To-Be#2)-(To-Be#1) Small scale use
4		Immature Additive Manufacturing + CPLM + 3DLST	\$6,025			-\$10,065		←(To-Be#3)-(To-Be#2) Small scale use
5		Mature Adultive Manufacturing + CPLM	\$830,959				\$814,868	
6	Radical	Mature Additive Manufacturing + CPLM + 3DLST	\$881,348	(Rad. To-Be#2)-(Rad. To-Be#2) → Large scale use	\$50,390	\$875,327	← (Rad. To-Be#2)-(To-Be Scale up to produce final parts

Conclusions & Implications

- Integrated new technology adoption and use can generate large savings (>\$800m/yr). The US Navy should plan for and adopt these new technologies. {Practice}
- Different technologies can save/cost more or less. An adoption strategy and plan based on analysis is needed. {Research}
- Capturing very large savings requires large scale use.
 The strategy and plan should go beyond testing and trials to full scale use of new technologies.

 {Research & Practice}

Issues for Future Research

- How much of what types of parts should the Navy make versus buy from industry?
- Requires changes in procurement regulations
- Transitions to steady –state use
 - Short term costs for adoption
 - Speed of adoption
 - Adoption locations

Questions Comments Discussion

5) Estimate Costs and Savings

Example Calculation of the Surrogate Revenue Streams for the Four-Part/Technology Types

		Prototypes		Final Parts			
	Market comparable Production value		Surrogate revenue stream	Production	Market comparable value	Surrogate revenue stream	
	(parts/yr)	(\$1,000/part)	(\$1,000/yr)	(parts/yr)	(\$1,000/part)	(\$1,000/yr)	
Old technologies	3,000	\$10.5	\$31,500	25,000	\$42.0	\$1,050,000	
New technologies	2,000	\$10.5	\$21,000	0	\$42.0	\$0	

As-Is Scenario